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We theoretically investigate the thermoelectric transport through a circuit implementation of the three-
channel charge Kondo model quantum simulator [Z. Iftikhar et al., Science 360, 1315 (2018)]. The
universal temperature scaling law of the Seebeck coefficient is computed perturbatively approaching the
non-Fermi liquid strong coupling fixed point using the Abelian bosonization technique. The predicted
T1=3 logT scaling behavior of the thermoelectric power sheds light on the properties of Z3 emerging
parafermions and gives access to exploring prefractionalized zero modes in the quantum transport
experiments. We discuss a generalization of approach for investigating a multichannel Kondo problem with
emergent ZN → ZM crossovers between “weak” non-Fermi liquid regimes corresponding to different
low-temperature fixed points.
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Quantum thermoelectricity is one of the most rapidly
developing directions of quantum technology [1,2].
Modern progress in fabrication of nanodevices operating
at ultralow (milli-Kelvin range) temperatures opens access
to a broad variety of the charge, spin, and heat transport
phenomena governed entirely by the quantum effects [3,4].
In particular, quantization effects in behavior of quantum
simulators (see. e.g., [5–12]) at the regimes affected by
quantum criticality are challenging for both experimental
and theoretical communities.
Among a large variety of available quantum devices,

quantum dots (QDs) play an important and significant role.
On the one hand, the QD devices [3,4] are highly
controllable and fine-tunable setups operating at the
regimes adjustable by external electric and magnetic fields
at both weak and strong out of equilibrium conditions.
On the other hand, the QD devices, as the quantum
impurity simulators, provide an important playground for
understanding the influence of strong electron-electron
interactions, interference effects, and resonance scattering
on the quantum transport.
One of the cornerstone effects showing both the reso-

nance scattering and strong interactions as two sides of the
same coin is the Kondo effect [13,14]. While a conven-
tional Kondo phenomenon is attributed to a spin degree of
freedom of the quantum impurity [15–17], the unconven-
tional charge Kondo effect is dealing with an isospin
implementation of the charge quantization [18–23]. The
Kondo model [14–16] is one of the known realizations of
the “minimal models” archetypal for description of both
Fermi liquid (FL) and non-Fermi liquid (NFL) regimes
associated with the collective many-body phenomena.
The FL paradigm is one of the most important achieve-

ments of twentieth-century condensed matter physics [24].

It provides a tool to account for the effects of interaction in
the equilibrium and out-of-equilibrium correlation func-
tions [25]. While FLs are well defined objects characterized
by some universal properties of corresponding quantum
field theory encoded in scaling behavior of the correlation
functions [25] or, equivalently, certain constraints in the
phenomenological description, NFLs represent rather
“terra incognita” unless some strong fingerprints of the
quantum behavior inconsistent with the FL paradigm
directly follow from known classes of the models.
Fortunately, the multichannel Kondo (MCK) model gives
access to collective behavior completely different from the
FL theory predictions [26–28]. The beauty and “simplicity”
of the Kondo model makes it attractive for both exper-
imental implementation of the strongly correlated physics
and theoretical benchmarking of the many-body
approaches beyond conventional mean-field or perturba-
tion theory techniques. The price one has to pay for using a
minimal model is in immense complications in experimen-
tal fabrication of the MCK devices [29] and necessity to use
advanced and cumbersome theoretical tools for the descrip-
tion of the strong coupling regimes [30–32].
Recently, the breakthrough experiments [11,12] con-

vincingly demonstrated the paramount importance of MCK
physics for the quantum charge transport through nano-
devices. The few-channel Kondo physics is shown to be
extended beyond the existing realization of a two-channel
Kondo (2CK) effect [29,33] to a three-channel Kondo
(3CK) phenomenon. While the NFL regime of 2CK
[34–36] is explained by an emergent Z2 symmetry attrib-
uted to Majorana fermions [30,37], the 3CK physics is
known to be associated with Z3 parafermion states [38–43].
In this Letter, we address a fundamental question

regarding how the NFL physics of the 3CK model
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influences the quantum thermoelectric transport through
the quantum simulators reported in [11,12]. In particular,
we theoretically investigate a scaling behavior of thermo-
electric coefficients and analyze crossovers between the
NFL regimes associated with different low temperature
strong coupling fixed points of 3CK. The temperature
scaling of thermopower is closely related to corresponding
scaling of the fundamental quantum thermodynamic quan-
tities (see [44]) providing (as opposed to electric conduct-
ance measurements [11,12]) an access to fractionally
quantized entropy [44].
Model.—In a nanodevice (see Fig. 1) designed to be used

for thermoelectric measurements [45–48], the drain con-
sists of a large metallic QD electrically connected to
two-dimensional electron gas (2DEG) electrodes through
three quantum point contacts (QPCs) as proposed in
Refs. [11,12]. The 2DEG is in the integer quantum Hall
(IQH) regime at the filling factor ν ¼ 2. The QPCs are fine
tuned to satisfy the condition that only the outer spin
polarized chiral edge current is partially transmitted across
the QPCs. The drain is at the reference temperature T. The
source is separated from the QD by a tunnel barrier with
low transparency jtj ≪ 1 as described by a tunnel
Hamiltonian Htun ¼

P
kðtc

†
kdþ H:c:Þ with c and d denot-

ing the electrons in the left lead and in the dot. The
temperature of the source can be controlled by the “floating
island” technique [5]. A micron-sized metal island [5] is
electrically connected by several channels at opposite
voltages (to have a zero dc voltage) in the left electrode
upstream to the tunnel contact to the Kondo island [49].
Electrons in the floating island are heated up with Joule
heat. The resulting temperature is measured by noise-based
thermometry [5,49–51]. The temperature difference ΔT
across the tunnel barrier is assumed to be small compared to
the reference temperature T to guarantee the linear response
regime for the device at the weak link [52]. The central
metallic island (QD) is in a regime of weak (mesoscopic)
Coulomb blockade [21,53] characterized by the charging
energy EC. The gate voltage Vg is used to tune charge
degeneracy NðVgÞ to the regimes of Coulomb peaks (N is
half-integer) and Coulomb valleys (N is integer). The
Kondo physics is observed through the measurements of
the QPCs differential conductancesGα at zero bias voltages
Vα → 0 through the measurement of Iα=Vα [12] (see
Fig. 1). The MCK regime is fine tuned by setting trans-
mission coefficients across QPCs to be equal. Applying a
thermovoltage ΔV th to implement a zero-current condition
for the electric current between the source (orange lead) and
drain (QD and three blue leads) allows us to access the
thermoelectric coefficient GT through the measurements of
Iα=ΔT and Seebeck coefficient, also known as thermo-
power (TP), S ¼ GT=GjI¼0 ¼ −ΔV th=ΔT [45].
The mapping of the IQH setup to a MCK problem is

explained in detail in Ref. [54]. We assign the isospin ↑ to
the electrons in each QPC and the isospin ↓ to the electrons

in the QD. The charge isospin flips when the electrons
move in and out of the QD. Backscattering transfers
“moving in” the QD electrons to “moving out” from the
QD electrons and vice versa. The number of QPCs is
equivalent to the number of orbital channels in the conven-
tional S ¼ 1=2 Kondo problem.
It is convenient to describe the interacting electrons in

the QD and QPCs in the bosonized representation
[19–23,55]. We start with the Euclidean action S ¼ S0 þ
SC þ S0 describing the QD and three QPCs. The action S0
[32] stands for the free part representing three copies of free
one-dimensional electrons in QPCα

S0 ¼
vF
2π

X3

α¼1

Z
β

0
dt

Z
∞

−∞
dx

!
½∂tϕαðx; tÞ&2

v2F
þ ½∂xϕαðx; tÞ&2

"
;

FIG. 1. Schematic of three channel charge Kondo (3CK) setup.
A central metallic island, also known as quantum dot (QD), is
connected to four electrodes formed by two dimensional electron
gas. The state in QD is characterized by the isospin σ ¼ ↓. The
states in the electrodes are characterized by the isospin σ ¼ ↑.
The left (orange) electrode is heated to the temperature T þ ΔT
and connected to the rest of the setup through a tunnel contact
(red dashed lines). The reference temperature of the QD and three
blue electrodes is T. The yellow plunger gate is used to control a
mesoscopic Coulomb blockade in the QD. The setup is fine tuned
by an external magnetic field to the integer quantum Hall regime
ν ¼ 2. The current propagates along spin-polarized edge chan-
nels (red solid lines with arrows). Only one relevant (outer) chiral
edge channel is shown. The transparencies of the quantum point
contacts QPC1-QPC3 (narrow blue constrictions) are controlled
by the surface split gates (magenta boxes in insert). Black dashed
lines depict three independent x axes with origins located in the
middle of constrictions (QD boundary). Zoomed in edge state at
one of the QPCs and weak backscattering (red dotted lines) are
shown in the lower inset. The identical thermovoltages are
applied across the tunnel contacts to nullify the net electric
current through the device. Upper inset schematically shows a
renormalization group flow for 3CK. The unstable strong
coupling fixed point at G1 ¼ G2 ¼ G3 ≈ 0.69e2=h corresponds
to the 3CK non-Fermi-liquid regime.
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Here, ϕαðx; tÞ denotes bosonic field describing the transport
through QPCα (see, also, [54]) and vF is a Fermi velocity
[56], β ¼ 1=T (we adopt the units ℏ ¼ c ¼ kB ¼ 1).
The effects of the weak mesoscopic Coulomb blockade

in the QD are described by the Hamiltonian HC ¼
EC½n̂ − NðVgÞ&2. In the spirit of Andreev-Matveev theory
[55], the operator n̂ in the HamiltonianHC accounts for the
electrons entering the dot through the left weak tunnel
barrier and three QPCs (n̂ ¼ n̂L þ n̂QPC). The number of
electrons entering the QD from the QPCs is related to the
bosonic fields ϕα as n̂QPC →

P
3
α¼1 ϕαð0; tÞ=π [55,57],

while the operator n̂L counting the number of electrons
tunneling from the left electrode can be replaced by the
function nτðtÞ ¼ θðtÞθðτ − tÞ [55]. Here, θðtÞ is the unit
step function (Heaviside function). The Coulomb blockade
action SC in bosonized representation [19–23,55] is given
by

SCðτÞ ¼
Z

β

0
dtEC

!
nτðtÞ þ

1

π

X3

α¼1

ϕαð0; tÞ − NðVgÞ
"2
:

Finally, the action S0

S0 ¼ −
D
π

X3

α¼1

jrαj
Z

β

0
dt cos ½2ϕαð0; tÞ&;

characterizes the backscattering at QPCs with rα as the
reflection amplitude for the QPCα, and D is the bandwidth
(ultraviolet cutoff). We consider the symmetric situation,
where jr1j ¼ jr2j ¼ jr3j≡ jrj ≪ 1.
Three normal modes.—We introduce three linear com-

binations of the fields ϕα to represent charge, pseudospin,
and flavor modes (see, e.g., [58])

ϕcðx; tÞ ¼
1ffiffiffi
3

p ½ϕ1ðx; tÞ þ ϕ2ðx; tÞ þ ϕ3ðx; tÞ&;

ϕsðx; tÞ ¼
1ffiffiffi
2

p ½ϕ1ðx; tÞ − ϕ3ðx; tÞ&;

ϕfðx; tÞ ¼
1ffiffiffi
6

p ½ϕ1ðx; tÞ − 2ϕ2ðx; tÞ þ ϕ3ðx; tÞ&; ð1Þ

and the same for the dual boson fields ð1=πÞ∂xθα ¼ Πα ¼
−ð1=vFÞ∂tϕα satisfying equal-time commutation relations:
½ϕαðxÞ;Πα0ðx0Þ& ¼ iδðx − x0Þδαα0 [30–32]. Here, α, α0

denote charge, pseudospin S ¼ 1, and flavor. The pseudo-
spin and flavor modes are related to two diagonal
Gell-Mann matrices of the SU(3) group [4,59]. The para-
metrization (1) explicitly breaks the symmetry between
QPCs, while this symmetry is preserved in the model.
Therefore, we need to use two additional parametrizations
[60] corresponding to the cyclic permutations of the indices
1 → 2 → 3 (renumeration of the QPCs) and apply a sym-
metrization procedure at the point jrαj ¼ jrj. For brevity,

we omit index labeling the representation [60] in the
notations.
The action in the charge, pseudospin, and flavor modes

(for illustration, we use (1) ϕ⃗csf ≡ ϕ⃗μ [60]) is

S0¼
vF
2π

Z
β

0
dt
Z

∞

−∞
dx

X

α¼c;s;f

!
½∂tϕαðx;tÞ&2

v2F
þ½∂xϕαðx;tÞ&2

"
;

ð2Þ

SCðτÞ ¼
Z

β

0
dtEC

!
nτðtÞ þ

ffiffiffi
3

p

π
ϕcð0; tÞ − NðVgÞ

"2
; ð3Þ

S0 ¼ −
D
π
jrj

Z
β

0
dt
$
cos

!
2ffiffiffi
3

p ϕcð0; tÞ−
2

ffiffiffi
2

p
ffiffiffi
3

p ϕfð0; tÞ
"

þ2 cos
!
2ffiffiffi
3

p ϕcð0; tÞ þ
ffiffiffi
2

p
ffiffiffi
3

p ϕfð0; tÞ
"
cos ½

ffiffiffi
2

p
ϕsð0; tÞ&

%
:

ð4Þ

Action S0 is particle-hole (PH) symmetric. PH trans-
formation in the action SC corresponds to change from
N to −N (electrons are replaced by holes). As a result,
the transport coefficients G and GT transform under PH
transformation as follows:GðNÞ ¼ Gð−NÞ andGTð−NÞ ¼
−GTðNÞ. Besides, the thermoelectric transport requires
breaking of the particle-hole symmetry described by the
backscattering action S0.
Furthermore, due to the Coulomb blockade effect, all

transport coefficients are periodic in NðVgÞ and the action
is invariant with respect to the shiftN → N þ 1. To show it,
we notice that the electron travels from or to the QD, to
or from one of the QPCs. In the setup (see Fig. 1), there
are three possible ways to do it: (i) electron enters QD from
the QPC1: ϕ1 → ϕ1 þ π, ϕ2 → ϕ2, ϕ3 → ϕ3. As a result
ϕc → ϕc þ π=

ffiffiffi
3

p
, ϕs → ϕs þ π=

ffiffiffi
2

p
, ϕf → ϕf þ π=

ffiffiffi
6

p
;

(ii) electron enters QD from the QPC2: ϕ1 → ϕ1,
ϕ2 → ϕ2 þ π, ϕ3 → ϕ3, then ϕc → ϕc þ π=

ffiffiffi
3

p
,

ϕs → ϕs, ϕf → ϕf − 2π=
ffiffiffi
6

p
; and (iii) electron enters

QD from the QPC3: ϕ1 → ϕ1, ϕ2 → ϕ2, ϕ3 → ϕ3 þ π,
then ϕc → ϕc þ π=

ffiffiffi
3

p
, ϕs → ϕs − π=

ffiffiffi
2

p
, ϕf → ϕf þ

π=
ffiffiffi
6

p
. These discrete transformations keep the backscat-

tering action S0 invariant and increase the charge of the QD
by one. We rely upon these transformations (as well as
corresponding transformations in basis ϕ⃗λ and ϕ⃗ρ [60]) in
the perturbative calculations (see details in [61]).
Perturbative calculations.—The transport coefficients G

and GT are expressed in terms of the correlation function
KðτÞ [55]

KðτÞ ¼ ZðτÞ=Zð0Þ;

ZðτÞ ¼
Z

exp½−S0 − SCðτÞ − S0&
Y

α

Dϕαðx; tÞ: ð5Þ
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This correlation function is characterized by the following
symmetries associated with PH and shift transformation:
Kðβ − τ; NÞ ¼ Kðτ; 1 − NÞ and Kðβ − τ; NÞ ¼ Kðτ;−NÞ.
The electric conductance G [20] is given by

G ¼ GLπT
2

Z
∞

−∞

1

cosh2ðπTtÞ
K
&

1

2T
þ it

'
dt: ð6Þ

Here, GL ≪ e2=h denotes the tunnel conductance of the
left barrier calculated ignoring influence of the dot. The
thermoelectric coefficient GT takes the form [55]

GT ¼ −
iπ2

2

GLT
e

Z
∞

−∞

sinhðπTtÞ
cosh3ðπTtÞ

K
&

1

2T
þ it

'
dt: ð7Þ

The correlator KðτÞ acquires a simple form in the
absence of the backscattering. The action S0 þ SC is
Gaussian and the functional integrals are explicitly evalu-
ated resulting in [62] (see details of calculations in [61])

KðτÞjr¼0 ¼ Kð0ÞðτÞ ¼
!
π2T
3γEC

1

j sin ðπTτÞj

"
2=3

: ð8Þ

Here, γ¼eC≈1.78, C ≈ 0.577. The backscattering r ≠ 0
explicitly breaks the PH symmetry. However, the mecha-
nism of the PH symmetry breaking is different for the FL
(M ¼ 1) and MCK-NFL, (M ≥ 2) states. Namely, for the
FL case, there exists only one gapped mode associated with
the charge. Therefore, the PH symmetry breaking occurs
already in the first order of the perturbation theory [55].
If, however, there areM − 1 gapless modes describing spin
and flavors for the MCK-NFL, the first order perturbative
correction vanishes, and PH symmetry breaking occurs in
the second order. The nonvanishing contribution to the GT
and S is associated with the fluctuations of M − 1 gapless
modes. We process with the perturbative calculations at
the second order Kð2ÞðτÞ ¼ KCðτÞðhS02iτ − hS02i0Þ=2. The
validity of the perturbation theory at jrj2 ≪ 1 for 2CK [55]
is justified by the condition for the temperature regime
T' ≪ T ≪ EC where T' ¼ jrj2EC [55]. We refer to this
regime as the weak NFL regime.
Scaling of transport coefficients.—The main contribu-

tion to the electric conductance does not depend on jrj. Its
temperature scaling is fully determined by the form of
Kð0ÞðτÞ given by Eq. (8) (see [63,68])

G ∼GL½T=EC&2=3: ð9Þ

We compute the perturbative contribution to the thermo-
electric coefficient GT proportional to jrj2 [61] with
log-accuracy using three parametrizations of the charge,
pseudospin, and flavor modes and symmetrize over three
QPC index permutations (renumerations) [60]. Finally,
each QPC contributes equally to GT

GT ∼
GL

e
jrj2 sin ð2πNÞ½1þ a cos ð2πNÞ&

!
T
EC

"
ln
!
EC

T

"
:

ð10Þ

with a ∼ 1 [61]. Substituting Eqs. (10) and asymptotic
equation for G Eq. (9) into the definition of the TP
S ¼ GT=G, we obtain [69]

S ∼
1

e
jrj2 sin ð2πNÞ½1þ a cos ð2πNÞ&

!
T
EC

"
1=3

ln
!
EC

T

"
:

ð11Þ

The perturbative 3CK results forGT (10) and TP (11) do not
diverge at the limit T → 0 in contrast to 2CK predictions
[55]. Besides, the temperature scaling of TP S3CK ∝
T1=3 logT is consistent with the corresponding nonpertur-
bative scaling of the TP maximums S2CKmax ∝ T1=2 logT for
2CK. In both cases, S vanishes when T → 0. Therefore,
we expect that the scaling (11)will survive at the limitT → 0
and acquire only marginal modifications in the argument of
log [55]. Equations (10)–(11) represent the central result
of this Letter.
Channel symmetry breaking.—We comment on possible

ways to crossover 3CK → 2CK and 3CK → 1CK in the
charge Kondo circuits. These crossovers have been exper-
imentally reported in [11,12] and numerically reproduced
in [70–72] by using the numerical renormalization group
(NRG) technique. The simplest way to describe continuous
crossover of 3CK → 2CK is to imbalance, e.g., the reflec-
tion amplitudes in QPC1 and QPC3 [73]. Having a13 ≡
jjr1j − jr3jj as a relevant perturbation to the symmetric state
characterized by s13 ≡ ðjr1jþ jr3jÞ=2 ≈ jrj provides a con-
dition for a crossover a13 ∼ s13 similar to the theory of
channel symmetry breaking of 2CK → 1CK discussed in
[52]. In addition, the condition a13s13 ≪ jr2j2 ≈ jrj2 is
required. However, one needs to go beyond the perturba-
tion theory for the quantitative description of the crossover.
The mechanism of 3CK → 1CK is more delicate. First, the
experiment [12] shows the nonmonotonic behavior of
conductance evolution confirmed by nonmonotonic NRG
flow in numerical calculations [70–72]. Second, the cross-
over regime has to be fine tuned by the condition
ja13s13 − jr2j2j ≪ jr2j2. Discussion of these regimes goes
beyond the scope of this Letter and will be published
elsewhere [74].
Discussion and open questions.—Describing the quan-

tum thermoelectricity in the NFL regime of the MCK
model at the strong coupling limit T ≪ T' is one of the
main open questions. In particular, it is important to
understand if there exists a re(para)fermionization pro-
cedure for the Z3 fixed point similar to the Emery-Kivelson
(EK) approach [37] developed for Uð1Þ → Z2 symmetry
reduction [75]. The EK refermionization being a corner-
stone for the understanding of the emergence of the NFL
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state of 2CK is known to allow straightforward reformu-
lation of the strong coupling Hamiltonian in terms of Z2

Majorana (para)fermions. However, even if such a pro-
cedure does exist for the Z3 low temperature fixed point
[76], the strong coupling Hamiltonian will not be quadratic
anymore in terms of the Z3 parafermions [77]. Therefore,
the nonperturbative treatment of the 3CK problem at its
strong coupling will require some additional assumptions
or approximations. Yet another challenging question is
related to the generalization of the approach developed in
this Letter for the description of the M > 3 MCK effect
at the strong coupling. We expect that even and odd
M-channel models behave significantly differently: while
the ground state of the even-M ¼ 2k channel models can be
represented in terms of the Majorana fermions [78], Z2kþ1

parafermions are needed for the description of the odd-
M ¼ 2kþ 1-channel Kondo physics. Besides, switching
between Z2kþ1 and Z2k low temperature fixed points opens
an interesting possibility for investigation of the crossovers
between states with different parafermion fractionalized
zero modes. The same goal can be achieved by using the
quantum simulators containing a tunnel contact between
two different NFL states [54].
Conclusions.—In this Letter, we theoretically address a

fundamental question of the prefractionalized zero mode’s
influence on the quantum thermoelectricity of nanodevices.
Using an asymptotically exact analytic approach based on
Abelian bosonization, we predict the fractional T1=3 logT
low-temperature scaling behavior of the Seebeck coeffi-
cient. While this scaling is obtained perturbatively at the
weak NFL regime, we also present convincing arguments
on the validity of the results at the strong coupling limit.
The fractional scaling of the quantum thermoelectric trans-
port coefficients is closely related to behavior of quantum
thermodynamic observables [79]. We propose to use an
experimental technique [12] providing the circuit imple-
mentation of quantum simulators of the MCK model for
investigation of the parafermion contribution to the quan-
tum thermoelectricity controlled by switching the quantum
regimes between different low temperature fixed points.
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